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Abstract

In the statistical energy analysis (SEA) approach to vibration modeling, a complex system is represented
as an assembly of coupled subsystems, and the method leads to the prediction of the vibrational energy level
of each subsystem. The averaging procedures implicit in the technique imply that the predicted energy is the
mean value taken over an ensemble of random structures, such as a set of vehicles leaving a production line.
Recently, a new method has been developed to allow the ensemble variance, in addition to the mean, to be
predicted within the context of SEA, and the present paper concerns further extension and validation of this
work. The theoretical extension concerns the variance of the energy density at a single point in any of the
subsystems, and the validation includes both simulation and experimental studies. The simulation results
concern plate assemblies, while experimental results are presented both for a single-plate and for a cylinder-
plate structure. In each case an ensemble of random structures has been generated by adding small point
masses at random locations on the structure. In general, good agreement between the predictions and the
validation results is observed.
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1. Introduction

The prediction of the high-frequency response of a complex dynamic system is a difficult task
for two reasons. Firstly, the deformation of the system is of short wavelength, which means that
very many degrees of freedom are required to model the response in detail, and secondly the
response is sensitive to small changes in the properties of the system. The second point can lead to
nominally identical items from the same production line having very different behavior, as clearly
demonstrated for automotive structures by the experimental results of Bernhard and Kompella
[1]. Both of these difficulties are addressed by statistical energy analysis (SEA) [2], where an energy
flow model is used in place of a detailed deterministic model of the system. The degrees of freedom
are the vibrational and acoustic energy levels of various regions, or subsystems, of the structure.
Relatively few subsystems are employed, typically tens or hundreds, which is several orders of
magnitude less than the number of degrees of freedom required in a detailed deterministic model,
thus avoiding the first difficulty. The second difficulty is addressed by certain averaging
procedures which are implicit in SEA, and which imply that the computed energy levels represent
ensemble mean values—for example, the mean interior noise level in a fleet of vehicles from a
production line. There has been recent progress in extending SEA to the prediction of the variance
of the subsystem energies [3], and the present paper is concerned with the further extension and
validation of this work.

The prediction of the variance of the vibrational energy of a single isolated subsystem has been
the subject of research for many years. In early work it was assumed that the natural frequencies
of the subsystem form a Poisson point process [4], but more recently this has been extended to
the case of natural frequencies governed by the Gaussian orthogonal ensemble (GOE) [5].
There is much numerical and experimental evidence that real systems conform to the GOE [6–8],
and single subsystem predictions based on this assumption have shown good agreement
with simulations [9,10]: one key difference between Poisson and GOE natural frequencies lies in
the statistical distribution of the spacings between successive natural frequencies. Under the
Poisson assumption this distribution is exponential, whereas the GOE assumption yields a
Rayleigh distribution. The latter is more consistent with the veering phenomenon that occurs
in complex systems without special symmetries—a full discussion of this issue can be found in
Refs. [6–8].

There has also been much interest in the statistics of the response of built-up systems [2], and
recently the single subsystem GOE analysis has been extended to a general assembly of
subsystems [3]. This allows the variance of the subsystems energies to be computed as a simple
post-processing stage to a standard SEA analysis. The aim of the present work is two-fold: (i) to
extend the theory of Ref. [3] to the variance of the energy density at a single point in any of the
subsystems, and (ii) to provide numerical and experimental validation of the theory. The first aim
is motivated by the fact that practical interest is often focused on a single response point—for
example, the sound level at the driver’s ear, rather than the total sound level in the interior of a
vehicle. The second aim is to add to the range of validation studies presented in Ref. [3], by
considering ensembles of structures both via simulation and via experiment. The simulation
results concern plate assemblies, while the experimental results concern both a single-plate and a
cylinder-plate assembly. In all cases, a random ensemble has been generated by adding small
masses at random locations on the structure.
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It should be noted that in the literature there are two approaches to analyzing variance within
the context of SEA that are quite different from both a philosophical and a practical point of
view. The present approach, and that of Refs. [2,3], aims to compute the variance of the system
energy levels across an ensemble of random structures. Within this approach, it is recognized that
the standard SEA equations govern the ensemble mean energies, and that these equations are not
necessarily valid for a single member of the ensemble. The other approach is to randomize the
various coefficients that appear in the SEA equations (for example, the coupling loss factors), and
then calculate the statistics of the energy levels yielded by these equations [11,12]. In effect, this
second approach considers the variance of the ensemble mean energy across an ‘‘ensemble of
ensembles’’, when there are gross changes to the system properties (junction lengths, subsystem
areas, etc.) across the top-level ensemble. This approach would yield zero variance for all of the
examples considered here, where there are no gross changes to the system properties. If the system
properties are subject to gross changes, then the present approach can be viewed as yielding
conditional values of the mean and variance, and Bayes theorem can be used to incorporate the
effect of the large-scale uncertainties.

SEA and the variance prediction theory are summarized in Section 2, and the extension of the
theory to the energy density at a point is given in Section 3. Numerical validation results are then
presented in Section 4, and experimental results are reported in Section 5.
2. SEA and energy variance prediction

2.1. General equations

In the SEA approach to vibration prediction, an engineering system is represented as an
assembly of coupled subsystems, and one aim is to find the vibrational energy Ej for each
subsystem j. The approach is based on the principle of power balance, and the governing equation
for the jth subsystem at vibration frequency o is [2]

oZjEj þ
X

k

oZjknjðEj=nj � Ek=nkÞ ¼ Pin;j. (1)

Here Zj is the loss factor of subsystem j, nj is the modal density of the subsystem, Pin,j is the power
input from external sources, and Zjk is the coupling loss factor from subsystem j to subsystem k.
SEA is concerned with systems that are inherently random, such as items from a production line,
where the response may be sensitive to relatively small manufacturing variabilities. The subsystem
energies Ej yielded by the method are the ensemble average energies, where the ensemble consists
of the population of random structures. Likewise, Pin,j represents the ensemble average power
input; for ease of notation, and to conform with standard SEA usage, the expectation symbol E[ ]
is not written explicitly for these quantities, i.e. more strictly the terms should be written as E[Ej]
and E[Pin,j]. The energy may be further averaged over a frequency band, in which case the
frequency o that appears in Eq. (1) represents the center frequency of the band. Eq. (1) can be re-
expressed in matrix form as

CÊ ¼ Pin, (2)
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where Êj ¼ Ej=nj is the ensemble mean ‘modal energy’ of subsystem j, and the entries of the
matrix C and the vector Pin follow immediately from Eq. (1). Strictly, following the argument
above Eq. (2), Êj should be written as E½Êj� to emphasize the fact that Eq. (2) governs the
ensemble-averaged modal energy; however, the more standard notation is retained here.

Eq. (1) has recently been extended to the prediction of the ensemble variance of the subsystem
energies [3]. An equation in the form of Eq. (2) can actually be written for each member of the
random ensemble of systems, with all three terms taken to be random across the ensemble, and
with the energy vector representing the energy of the particular member system, rather than the
ensemble average energy. A perturbation expansion of this equation, taken around the mean
values, can then be performed. It follows that to the first order in the random perturbations, the
SEA matrix C is equal to the ensemble average of the random matrix. To the same order, an
expression can be obtained for the random part of the modal energies that is linear in the random
part of the matrix and in the random part of the power input, Cran and Pran say. This then leads to
the result

Var½Êj� ¼
X

k

ðC�1
jk Þ

2Var½Pran;k� þ
X

k

X
sak

ðC�1
jk � C�1

js ÞÊs

n o2

Var½Cran;ks�, (3)

where Var½Êj� represents the ensemble variance of the modal energy in the jth subsystem, and C�1
jk

represents the jk entry of the inverse of the SEA matrix C. Here again, the term Ês in the second
sum should strictly be written as E½Ês�, as it represents the ensemble averaged modal energy in the
sth subsystem. Two important issues in the derivation of Eq. (3) are: (i) the matrix Cran is not
necessarily symmetric, even though the mean SEA matrix C is symmetric, and (ii) the entries of
the matrix Cran are not uncorrelated, as a result of the energy balance condition that applies to
any member system. It is shown in Ref. [3] that

Var½Pran;k� ¼ P2
in;kr2ðak;m

0
k;B

0
kÞ; Var½Cran;ks� ¼ C2

ksr
2ðaks;m

0
k;B

0
kÞ, (4,5)

where

Z0k ¼ 1=ðonkC�1
kk Þ; m0

k ¼ oZ0knk; B0
k ¼ D=ðoZ0kÞ. (6,7,8)

The term Z0k is the in-situ loss factor for subsystem k [2], m0
k is the half-power modal overlap factor

arising from this loss factor, and B0
k is a bandwidth parameter which represents the number of

modal bandwidths within the frequency-averaging band D (B0
k ¼ 0 if no frequency averaging is

considered). The function r2 that appears in Eqs. (4) and (5) is given by [9,10]

r2ða;m;BÞ 	
a� 1

pmB2
2B tan�1 B � lnð1 þ B2Þ
� �

þ
lnð1þ B2Þ

ðpmBÞ2
. (9)

This result is actually an approximation that becomes increasingly accurate with increasing m. For
B ¼ 0, an alternative result is available that is accurate for all values of m [9]

r2ða;m; 0Þ ¼
1

pm
a� 1 þ

1

2pm
1� e�2pm
� �

þ E1ðpmÞ coshðpmÞ �
1

pm
sinhðpmÞ

� 	
 �
, (10)

where E1 is the exponential integral. The assumptions and approximations that underlie
Eqs. (3)–(10) are fully discussed in Ref. [3], but it is worth noting that the key assumptions
underpinning the method are: (i) SEA provides a good estimate of the mean subsystem energies,
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so that the normal requirements of SEA (for example weak coupling) are met; (ii) each subsystem
is sufficiently random to exhibit statistical overlap, so that GOE statistics apply to the natural
frequencies. The only ‘‘non-SEA’’ parameters that appear in these equations are the terms ak and
aks in Eqs. (4) and (5), which are discussed in the following section.

2.2. The parameters ak and aks

The key result that underpins the variance theory summarized in the previous section concerns
the statistics of the response of a single uncoupled subsystem. Regardless of the form of the
excitation, the reverberant energy of one particular realization of the subsystem can be written as
twice the kinetic energy, in the form of a modal expansion [9,10]

E ¼
o2

2

X
n

Z oþD=2

o�D=2

an

ðo2
n � o2Þ

2
þ ðZo2

nÞ
2

do, (11)

where the sum is taken over the modes of the subsystem, and an is the modulus squared
generalized force associated with the nth mass-normalized mode. The relative variance of E has
been shown to be [9,10]

Var½E�

E½E�2
¼ r2ða;m;BÞ, (12)

where r2 is the function given by Eq. (9) or Eq. (10), and m and B are, respectively, the modal
overlap and bandwidth parameters, as given by Eqs. (7) and (8), with the symbols interpreted
appropriately for the special case of a single subsystem. The parameter a is defined as

a ¼
E½a2

n�

E½an�
2
. (13)

Eq. (12) is based on the assumption that the statistics of the subsystem natural frequencies
conform to the GOE. Justification for this is given in Refs. [9,10], but it is worth noting here that
the assumption requires ‘‘statistical overlap’’, i.e. the system must be sufficiently random for the
standard deviation of random shifts in a particular natural frequency across the ensemble to
exceed half the mean frequency spacing. This condition is likely to be met at higher frequencies
where the modal spacing is small relative to any particular natural frequency, but is less likely to
be met at low frequencies, where the subsystem behavior can be near deterministic [3].

Eq. (4) of the general variance theory is built upon the assumption that subsystem k is weakly
coupled to other subsystems, so that the external power input to subsystem k can be written in the
form of Eq. (11), and the relative variance equation, Eq. (12), can be applied to give the relative
variance of the power input. The parameter ak therefore depends upon the nature of the power
input, via Eq. (13). If the power arises from a force f (x) distributed over the domain O of the
subsystem, then an is written as

an ¼

Z
O

f ðxÞfnðxÞ dx



2

, (14)

where fn is the nth mode shape of subsystem k. The value of ak will thus depend on the nature of
f (x) and the statistics of the subsystem mode shapes. In the case of a spatially random force (for
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example, a turbulent boundary layer), the energy may be pre-averaged over the force statistics for
each member of the random ensemble of structures. In this case, Eq. (14) becomes

an ¼

Z
O

f ðxÞfnðxÞ dx



2

* +
¼

ZZ
O;O

f ðxÞf 

ðx0Þ

� �
fnðxÞfnðx

0Þdx dx0, (15)

where / S represents an average over the force statistics.
Eq. (5) of the general variance theory is also based on the single subsystem analysis: as discussed

in Ref. [3], the response of subsystem k to excitation arising at the boundary with subsystem s

could be treated the same way as external forces, using Eq. (11). The coefficient Cran,ks can be
interpreted as the power input to subsystem k when subsystem s has a prescribed energy of unity,
and hence the analysis concerns the dynamic properties of subsystem k alone, rather than the
coupled dynamics of both subsystems. In this case, Eq. (14) is again appropriate, with f (x)
interpreted as the force applied by subsystem s, and the domain O interpreted as the interface
between the two subsystems: the fact that subsystem s has a prescribed energy of unity implies that
f (x) can be treated in exactly the same way as an external force of prescribed amplitude. The term
aks then follows from Eq. (13), and the resulting value will depend on the nature of the coupling
between the subsystems and the statistics of the mode shapes. If the system response is pre-
averaged over any spatially random external forces, then an equation analogous to Eq. (15) will
apply for the coupling forces, since on any given member of the ensemble the coupling forces will
vary with each realization of the external loading.

Given Eqs. (13) and (14,15), it might be thought that the calculation of ak and aks will be a
daunting task for a complex system. This is not the case however, and a compendium of values
has been derived for a wide range of power inputs and subsystem couplings [13]. To take one
example, consider two subsystems that are coupled along an extended junction (i.e. not at several
discrete points). From the central limit theorem, the generalized force arising from subsystem s

can be expected to approach a complex Gaussian random process, in which case an in Eq. (14) will
have an exponential distribution. It then follows from Eq. (13) that aks ¼ 2. This simple result will
apply to many types of practical junction. Other results for ak and aks that are relevant to the
examples considered in Sections 4 and 5 are given in Appendix A.
3. The variance of energy density at a point in a subsystem

The analysis given in the previous sections allows the variance of the total energy in a subsystem
to be computed. In some cases there may also be interest in the statistics of the response at a
particular point in a subsystem. This response can be written as

uðxÞ ¼
X

n

GnfnðxÞ

o2
nð1 þ iZÞ � o2

; Gn ¼

Z
O

f ðx0Þfnðx
0Þ dx0, (16,17)

where, as in Eq. (14), f (x) is the applied force, which may arise from external forces and from
other subsystems. The resonant energy density at the point x is proportional to the modulus
squared response; for the purposes of the present analysis the constant of proportionality can be
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omitted, and the energy density can be written as

�ðxÞ ¼ uðxÞ
 2. (18)

An approximate result for the relative variance of e can be derived by considering a heuristic
argument based on conditional probability. If the total energy of the subsystem is known
deterministically to be E then u(x) may vary randomly over the subsystem, but it must satisfy the
relation Z

A

�ðxÞ dx ¼ E ) �ðxÞ
� �

¼ E=A; (19)

where A represents the total length, area or volume of the subsystem, and / S consequently
represents the spatial average. It is now assumed, based on the central limit theorem, that the
spatial statistics of u have a complex Gaussian distribution; this is analogous to the approach to
room acoustics taken by Schroeder [14]. It then follows that e has an exponential distribution, for
which the relative variance is unity, so that

�ðxÞ2
� �

¼ 2ðE=AÞ
2. (20)

Now Eqs. (19) and (20) represent the conditional mean and mean squared value of e for a
specified value of E. If E is now taken to be random across the ensemble, with mean value E[E]
and relative variance r2E , then the unconditional statistical moments of e can be found by
averaging Eqs. (19) and (20) over the ensemble to give

E½�� ¼ E½E�=A; E½�2� ¼ 2ðr2E þ 1ÞE½E�2=A2. (21,22)

The relative variance of e is then given by

r2� ¼ 1þ 2r2E . (23)

Thus, if the relative variance of the subsystem energy is given by the analysis of Section 2, then the
relative variance of the energy density at a point can be estimated from Eq. (23).

The analysis leading to Eq. (23) is far from rigorous, and it is therefore advisable to seek
supporting evidence from the existing literature. Burkhard and Weaver [6] and Lobkis et al. [15]
have derived the statistics of the Green’s function of a single subsystem, based on the assumption
of GOE natural frequency statistics. This analysis can be applied to Eqs. (16) and (18) by making
several minor changes to the notation, and it follows that the relative variance of e is given by

r2� ¼ 1þ
1

pm

E Gnj j4
� �

E f4
n

� �
E Gnj j2
� �2

E f2
n

� �2 � gðpmÞ

( )
. (24)

The function g is detailed in Ref. [15], and ranges from g ¼ 0 at low modal overlap (m ¼ 0) to
g ¼ 3 at high modal overlap (m ¼ N). In the same notation, the relative variance of the total
subsystem energy is given to first order in 1/pm by [6,9]

r2E ¼
1

pm

E Gnj j4
� �

E Gnj j2
� �2 � 1

( )
. (25)
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As the modal overlap factor increases, the function g asymptotes to 3, and Eqs. (24) and (25) then
support the general form of Eq. (23). In this case, rather than having the fixed value 2, the
coefficient of the second term will depend upon both the statistics of the mode shapes and the
statistics of the loading. For Gaussian mode shapes, the modal ratio that appears in Eq. (24)
would have the value 3, although numerical simulations of various random systems have shown
that the mode shapes have a slightly negative excess of kurtosis [15,16], and a closer
approximation is 2.7. With this value, it follows that

r2� ¼ 1þ
2:7b� 3

b� 1

� �
r2E , (26)

where the value of b is determined by the statistics of the generalized force. For a point load
(b ¼ 2.7) the corresponding result would be r2� ¼ 1 þ 2:52r2E , while for a complex Gaussian
generalized force (b ¼ 2) the result is r2� ¼ 1þ 2:4r2E . A more deterministic load, with say b ¼ 1.25,
would yield r2� ¼ 1þ 1:5r2E . For comparison, were the natural frequencies assumed to be Poisson,
rather than GOE, then the result for point loading would be r2� ¼ 1þ 2:25r2E [4]. This result
further supports the general form of Eq. (23), although there is some variation in the coefficient of
the second term. The coefficient of 2 suggested by Eq. (23) can be viewed as a tentative value
requiring validation against benchmark studies, and such studies are reported in Sections 4 and 5.

Thus far, the effect of frequency band averaging on the energy density has not been considered.
In the case of Poisson natural frequencies, Lyon [4] has shown for a single subsystem that both r2�
and r2E are scaled by a function F(B), where B is the bandwidth parameter defined by Eq. (8) and

F ðBÞ ¼
2

B
tan�1ðBÞ �

1

B2
lnð1 þ B2Þ. (27)

In the case of GOE statistics, the first two terms in Eq. (24) are also scaled by F(B), but the
modification to the term involving g is much more complex. In view of this behavior, a suitable
empirical modification to Eq. (23) to allow for the effect of band averaging is

r2� ¼ F ðBÞ þ 2r2E , (28)

where r2E is now the result for the band-averaged total energy. At very high modal overlap,
Eq. (28) yields r2� 	 F ðBÞ, which is in agreement with a result obtained by Schroeder [17].

Another case of interest concerns the variance of the energy density when the system is
subjected to spatially random loading, such as rain-on-the-roof. Here the principle of reciprocity
can be applied: the energy density at a point in subsystem k caused by rain-on-the-roof loading in
subsystem s is proportional to the total energy in subsystem s caused by point loading in
subsystem k. The relative variance relating to the latter problem is given by the theory presented in
Section 2, and hence a solution to the former problem can be found.
4. Comparison with numerical simulations

Numerous computational validation studies relating to the variance theory presented in Section
2 have been given in Ref. [3]. This section describes an additional validation case, which is directed
primarily at the new material regarding the energy density at a point presented in Section 3. The
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validation case also serves to highlight key differences between the present variance formulation
and the earlier variance theory of Ref. [2]. The method reported in Ref. [2] provides many insights
into variance propagation through a built-up structure, but it is based on Poisson natural
frequency statistics rather than the present GOE approach, and there are detailed differences from
the current theory that are summarized in Appendix B.

4.1. The system considered: two edge-connected plates

The example considered consists of two coupled plates, the properties of which are given in
Table 1. The plates are coupled along a common edge, and to emphasize the differences between
the variance formulations presented in Refs. [2,3], the parameters are chosen to give very different
values of modal overlap in the two plates. Plate 1 is excited by a harmonic transverse point force,
and only the bending motion is considered (i.e. in-plane motion is not included). Both plates are
rectangular and simply supported, with rotational compatibility along the common edge, and the
construction material is aluminum (Young’s modulus 7.2 1010N/m2, density 2800 kg/m3, and
Poisson’s ratio 0.3).

Benchmark Monte Carlo simulation results have been obtained by using the Lagrange–
Rayleigh–Ritz method with the sine–sine mode shapes of the uncoupled plates as basis functions.
Randomization of each plate has been achieved by adding ten point masses at random locations,
with each mass having 2% of the total mass of the plate, and three rotational springs randomly
located on each edge (except the edge common to both plates). The added masses and springs are
accounted for in the analysis by adding the appropriate kinetic and potential energies to the
Lagrangian. The coupling condition along the common edge was enforced by adding stiff
rotational springs to ensure rotational compatibility. An ensemble of 100 systems has been
generated and solved. The choice of rectangular plates has been made here as an analytical
convenience. Although a rectangular geometry with simply supported boundary conditions has
certain special symmetry properties (due to the fact that the system can be represented as a set of
uncoupled waveguides), these properties are destroyed by the addition of random masses and
springs. Thus, the present results would be expected to be reproduced for plates of different
geometry having the same gross properties (area, junction length, etc.) as the present plates.

4.2. Statistics of the plate energies

4.2.1. Energy due to a single deterministic point force

For the case of a single deterministic point load applied to plate 1, the energies of the two plates
are shown in Fig. 1 as functions of frequency for each of the 100 generated samples. The ensemble
Table 1

Properties of the two-plate structure

Plate Thickness (mm) Size (mm) Loss factor Z (%) Modal density

(modes/Hz)

Modal overlap m

at 700Hz

1 1 1.05 1.30 5 0.445 15.5

2 5 1.25 1.30 0.02 0.106 0.015
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Fig. 1. Energy frequency response of two line-connected random plates, when plate 1 is driven by a point force. (a)

plate 1; (b) plate 2. Gray: energy response of each sample; fluctuating black: mean response over all samples; smooth

black: SEA prediction.
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mean values are also shown. It can be seen that the mean energy is lower in plate 2 than in plate 1,
while the scatter in the energy (related to the variance) is much higher. The frequency range covers
approximately 311 resonant modes of plate 1 and 74 resonant modes of plate 2. The mean energy
predictions from SEA are also shown in the figure, and these show good agreement with the
Monte Carlo results. It can be noted that the mean energies as given by the Monte Carlo
simulation are not entirely smooth functions of frequency, and this can be traced primarily to the
limited sample size employed in the present analysis. As in all the following figures, the simulation
(or experimental) results are fluctuating curves and the theoretical predictions are smooth curves.

Theoretical predictions for the relative variance are compared with the simulation results in
Fig. 2. Results from the theory presented in Ref. [2] are plotted with dashed lines, while results
from Eq. (3) are plotted with solid lines. When applying the variance theory from Ref. [2], the
following parameters have been employed (the equation numbers refer to those given in Ref. [2]):
Eq. (12.3.4) yields ak ¼ (3/2)2 for point force loading, while Eq. (12.3.7) yields ak ¼ as ¼ 3/2 for a
line coupling between the plates. For the present variance theory, Eq. (A.2) of Appendix A yields
a1 ¼ 2.7 for use in Eq. (4), and Eq. (A.6) yields a12 ¼ a21 ¼ 2 for use in Eq. (5).

Some details of the differences between the two variance formulations are given in Appendix B.
Because the coupling between the plates is fairly weak, the variance of the driven plate is primarily
due to the variance of the input power from the point load. The slight overestimation of the
variance of plate 1 by the theory of Ref. [2] is mainly related to the first point listed in Appendix B
regarding Eq. (B.1), i.e. it arises from the consideration of Poisson rather than GOE natural
frequency statistics (see Ref. [9] for a more detailed discussion). The GOE results show closer
agreement with the simulations, as also found in previous studies [3,9]. The underestimation of the
variance of plate 2 by the theory of Ref. [2] can be explained with reference to Eq. (B.2) of
Appendix B. The very high modal overlap of plate 1 yields a very small variance for the coupling
term as given by Ref. [2], Eq. (B.2a); in contrast, Eq. (B.2b) of the present theory yields a much
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larger variance that depends upon the modal overlap of plate 2 alone. The results shown in Fig. 2
help to justify the assumptions made in Ref. [3] regarding the non-symmetric structure of the
random part of the energy-power matrix, leading to Eq. (B.2b).

The results for the plate energies when averaged over 12th-octave-frequency bands (which gives
a bandwidth of approximately 40Hz at 700Hz) are shown in Fig. 3. While the mean energies are
virtually unchanged by band averaging, the relative variance is slightly reduced for plate 1 and
much more reduced for plate 2, and this is reasonably well predicted by employing Eq. (9) rather
than Eq. (10) in the variance theory. It can be noted that for 12th-octave-bands the bandwidth
parameter in Eq. (9) is B0

k ¼ ð21=24 � 2�1=24Þ=Z0k, where Z0k is the in-situ loss factor for subsystem k.
The fact that the loss factor is relatively high for plate 1 implies that the bandwidth parameter is
small, and hence the relative variance is not much affected by band-averaging; conversely, the loss
factor for plate 2 is low, leading to a large bandwidth parameter and a large reduction in the
relative variance. For example, values at 700Hz are B0

1�1:2, and B0
2�52:5.

4.2.2. Energy due to pre-averaged forcing: rain-on-the-roof
If plate 1 is subjected to spatially random rain-on-the-roof forcing, then the concern is with the

power spectrum of the response, and this requires pre-averaging the response over different
realizations of the forcing before considering variations across the ensemble of random structures
[3]. For rain-on-the-roof forcing, this pre-averaging has the same effect as averaging over the
location of a single deterministic point load. Theoretical predictions for the relative variance
under rain-on-the-roof forcing are compared with simulation results in Fig. 4, where good
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agreement is demonstrated. In this case, Eq. (3) was employed with a1 ¼ 1 in accordance with
Eq. (A.3), and a12 ¼ a21 ¼ 1 in accordance with Eq. (A.7). The results for a deterministic point
force are also shown in the figure for comparison. It can be seen that the relative variance of the
driven plate is much smaller for rain-on-the-roof loading than for a deterministic point force,
while the relative variance of plate 2 is less significantly reduced. The reason why the energy
variances are not similarly altered can be explained by considering Eq. (10): when a ¼ 1 the first
term involving 1/pm vanishes, leaving only the term involving 1/(pm)2. The effective modal
overlap of plate 1 is large (m0

1�15:5 at 700Hz), making a difference of the order r2ð2:7;m0
1; 0Þ=

r2ð1;m0
1; 0Þ�85:7 between single-point (a1 ¼ 2.7) and rain-on-the-roof (a1 ¼ 1) forcing. In

contrast, for plate 2 (m0
2�0:08 at 700Hz) the corresponding change arising from a21 is much

less, with r2ð2:7;m0
2; 0Þ=r2ð1;m0

2; 0Þ�3:1.
4.3. Statistics of the energy density at a point

The statistics of the modulus squared displacement at one point on each plate has been
computed from both the Monte Carlo simulations and the SEA and variance equations. The
observation points were chosen to be remote from the driving point and from the plate edges to
avoid near-field and correlation effects that are not covered by SEA and the present variance
theory. The mean modulus squared displacement can be predicted from the SEA mean energy
E[E] by using the relation E½juðx;oÞj2� ¼ 2E½EðoÞ�=Mo2, where M is the mass of the plate. When
single point loading is applied to the system, the relative variance of the modulus squared
displacement (or energy density) is given by Eq. (23). The theoretical predictions are compared
with the Monte Carlo simulations in Fig. 5, where good agreement is demonstrated. For
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lines: predictions from Fig. 2 for energy responses (instead of energy density).



ARTICLE IN PRESS

V. Cotoni et al. / Journal of Sound and Vibration 288 (2005) 701–728714
comparison, results relating to the total energies of each plate are also shown in the figure: the
relative variance of the energy density at a point is shown to be much higher than the relative
variance of the total energy (especially for the driven plate).

Results for the 12th-octave-band averaged energy density are shown in Fig. 6. In this case,
Eq. (28) gives the relative variance of the energy density in terms of the relative variance of the
total energy in each plate, which is in turn given by Eq. (3) in conjunction with Eq. (9).
Reasonable agreement between simulations and predictions can be seen in Fig. 6, although the
relative variance for the energy density in plate 2 is slightly underestimated. The prediction for
pure-tone data is also shown for comparison. It can be seen that the effect of frequency averaging
is much more noticeable for plate 2 than for plate 1, as already observed and explained for the
total energy.

If plate 1 is subjected to spatially random rain-on-the-roof forcing, then the response is pre-
averaged over different realizations of the forcing before considering variations across the
ensemble of random structures. As discussed at the end of Section 3, the relative variance of
the response at a point under rain-on-the-roof forcing is the same as the relative variance of the
energy under single-point forcing in the reciprocal problem. Theoretical predictions for
the relative variance under rain-on-the-roof forcing are compared with simulation results in
Fig. 7, where good agreement is demonstrated. The results for a deterministic point force are also
shown in the figure for comparison. The behavior noticed for the total energy is also observed
here, in that changing the point forcing to rain-on-the-roof forcing reduces the relative variance
on the driven plate much more than the relative variance on plate 2. This feature is captured by
the theory.
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5. Comparison with experimental results

5.1. A single plate

5.1.1. The test structure and the experimental setup
Experimental validation studies have been performed on the steel plate shown in Fig. 8.

Viscoelastic damping patches of irregular shape were glued to the plate to increase the loss factor,
which was estimated by measuring the input power Pin and flexural energy E (assuming this is
equal to twice the kinetic energy) and by applying the power balance equation Pin ¼ ZoE. The
result was found to be approximately constant over the frequency range of interest, and is given
together with the other properties of the plate in Table 2. The plate was randomized by adding a
set of nine masses at random locations. A total of 19 configurations were tested over the frequency
range 25 to 1250Hz, and only out-of-plane motion was considered. The plate was excited at five
fixed locations by an impact hammer equipped with a force sensor, and the transverse acceleration
was measured, with accelerometers at the excitation point and at 12 other points scattered over
the plate. The complex force–displacement transfer functions were computed from the
acceleration–force cross-spectra SAkF , and the force auto-spectrum SFF , by using the relation
uðxk;oÞ ¼ �SAkF ðoÞ=o2SFF ðoÞ. The time-averaged flexural energy of the plate was deduced from
the total mass M and the measured data by using EðoÞ ¼ jSAkF ðoÞ=SFF ðoÞj2

� �
k
M=2o2, where

/ Sk denotes an average over the accelerometers. Finally, the input power was estimated from
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Fig. 8. Experimental setup for the single plate. The Roman numerals indicate the five excitation points, the Arabic

numerals indicate the 12 observation points. The added masses are taped or magnetically attached to the plate. The

black patches are the damping treatment.

Table 2

Properties of the experimental plate

Material (steel) Dimensions Damping factor Z Mass Added mass

E ¼ 2.1 1011Nm�2, v ¼ 0.3, r ¼ 7800 kgm�1 S�2m2, h ¼ 1mm 1.39% 15.6 kg 1.6 kg (�10%)

V. Cotoni et al. / Journal of Sound and Vibration 288 (2005) 701–728716
PinðoÞ ¼ ImfSA0F ðoÞ=SFF ðoÞg=2o where SA0F is the acceleration-force cross-spectrum for the
accelerometer at the loading point.

5.1.2. Statistics of the total energy
Two examples of measured energy responses are shown in Fig. 9: the response to a single point

force is shown in Fig. 9(a), while the response averaged over five forcing locations is shown in
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Fig. 9. Energy of the random plate as a function of frequency. (a) Energy with one point load; (b) energy averaged over

five point loads. Gray: response of each experimental sample; fluctuating black: mean response over all 19 samples;

smooth line: SEA prediction.
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Fig. 9(b). In each diagram, the gray lines are the response curves for each of the 19 samples, the
fluctuating black line is the ensemble mean, and the smooth black line is the SEA prediction given
by E½EðoÞ� ¼ P1

in =Zo, where P1
in ¼ 1=16ðDrhÞ1=2 is the power input to an infinite plate of flexural

rigidity D. The SEA prediction is the same for both loading cases, and good agreement is found
with the measured data. The corresponding relative variances of the energy are shown in Fig. 10.
The theoretical predictions shown in the figure have been made by using Eq. (3) with a1 ¼ K for
the single-point load, as given by Eq. (A.2), and a1 ¼ 1+(K�1)/5 for the average over five-point
loads, as given by Eq. (A.3), with K taken to be 2.7. The modal overlap factor (m1 ¼ nZo)
required in Eq. (4) was obtained from the measured damping and the theoretical modal density of
the plate, given by n ¼ Sðrh=DÞ

1=2=4p (n 	 0:1 Hz�1). The modal overlap factor is a linear
function of frequency, with a value of approximately 8.8 at 1000Hz. It can be seen from Fig. 10
that the relative variance is much reduced when the energy is averaged over the five excitation
points, and this is well predicted by the theory.

The energy responses have been averaged over moving frequency bands of width D ¼ 10Zo.
The ensemble mean of the energy is almost unaffected by the averaging process, but the variance
is reduced, as shown in Fig. 11. The theoretical predictions shown in this figure have been made by
using Eq. (9) with B ¼ 10. The experimental variance has a fairly erratic behavior, due in part to
the relatively small ensemble considered here, but the average trends are reasonably well predicted
by the theory.

5.1.3. Statistics of the energy density at a point

The mean and relative variance of the modulus squared transfer function between two fixed
points on the plate are shown in Fig. 12. The SEA prediction of the mean value follows from the
predicted mean energy via E½juðxk;oÞj2� ¼ 2E½EðoÞ�=Mo2. The prediction of the relative variance
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Fig. 11. Relative variance of the frequency-band-averaged energy of the single plate versus frequency (D ¼ 10 Zo). (a)

Energy with one point force; (b) energy averaged over five point forces. The predictions are the smooth lines.
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(b) energy averaged over five point forces. The predictions are the smooth lines.
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follows from Eq. (23). While the predicted mean agrees fairly well with the experimental results,
the relative variance is over-predicted. Surprisingly, the experimental results yield a relative
variance that is less than unity at some frequencies, whereas the theory implies that the result
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should always exceed unity (unity is the lower limiting value, obtained for very large modal
overlap where Schroeder statistics apply [14]). Two potential causes of this discrepancy have been
investigated: (i) it is possible that the direct field due to the point force produces a significant
deterministic component of response across the ensemble, which reduces the relative variance, and
(ii) perhaps the 19 experimental samples are insufficient to yield a converged result for the relative
variance. Point (i) was found not to have a significant effect for the current system, since the direct
field is much less than the reverberant field. Point (ii) was investigated by performing Monte Carlo
simulations for a system having the same gross parameters as the experimental structure, and the
results obtained are shown in Fig. 13. With 19 samples (black curve) the results are similar to
those found in the experiment, while for 200 samples (gray curve) the relative variance is higher
and in much closer agreement with the theoretical result. Without being a rigorous investigation,
this suggests that the discrepancies shown in Fig. 12 are due to a lack of convergence in the
experimental ensemble. A system that is resonant at the excitation frequency and has a high value
of the relevant mode shape at both the drive and response points will exhibit a very large response.
Such systems occur rarely in the ensemble, but will have a large influence on the variance of the
response; thus, the considered ensemble must be large enough to capture a sufficient number of
these systems.

5.2. A cylinder with three attached plates

5.2.1. The test structure and the experimental setup
The structure shown in Fig. 14 comprises three plates connected to a circular bracket attached

at one end of a cylinder. The plates are identical in terms of material, thickness, damping
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Fig. 14. Cylinder-plate structure and experimental setup; the figure shows with the lower plate driven by a point force

(shaker).
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Fig. 13. Relative variance of modulus squared displacement as a function of frequency. Fluctuating black: Monte

Carlo simulation with 19 samples; fluctuating gray: Monte Carlo simulation with 200 samples; smooth line: prediction.
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Table 3

Properties of the cylinder and attached plates

Dimensions Damping factor a (%) Mass (kg) Total added masses

Plates a�0.4m, b�0.5m, h ¼ 1mm 1.5 1.5 340 kg (22%)

Cylinder r ¼ 0.14m, l ¼ 1.83m, h ¼ 1mm 0.6 13.6 3.6 kg (26%)

V. Cotoni et al. / Journal of Sound and Vibration 288 (2005) 701–728 721
treatment and area, whereas the exact geometries differ. All components are of steel, with the
properties given in Table 2 (aside from the loss factor), and other properties of the system are
given in Table 3. The loss factors shown in Table 3 were measured by the power injection method,
with viscoelastic damping material glued to the structure, and they were found to be
approximately independent of frequency. An ensemble of random systems was generated by
attaching masses at random locations on each substructure. Four masses were attached to each
plate and ten masses to the cylinder, and the total amount of mass used is shown in Table 3.

The assembled structure was suspended at two points as shown in Fig. 14. The experimental
setup consisted of one shaker, one impedance head at the excitation point, ten accelerometers
scattered on the cylinder, and four accelerometers scattered on each plate. A white noise signal
was applied to the shaker, which was attached either to one of the plates or to the cylinder. Valid
data were obtained up to 5000Hz in the first case, and up to 7500Hz in the second case
(limitations arise from the signal to noise ratio). Respectively, 25 and 30 samples were tested for
these configurations.

5.2.2. Statistics of the subsystem energies
An SEA model of the system was built within the software package AutoSEA [18] by describing

the connections between the plates and the cylinder as point junctions, since for much of the
frequency range the bending wavelength in the cylinder and plates is much longer than the bracket
dimensions (0.04m). The mean input power used in the SEA model was based on the relevant
theoretical result for an infinite system, with a mass correction factor accounting for the presence
of the impedance head: E½Pin� ¼ P1

in =j1 þ i2MaP1
in j

2, where Ma is the mass of the device between
the force sensor and the subsystem (estimated at 4.5 g), and P1

in is the infinite subsystem power
input per unit force. The mass effect of the impedance head was found to be significant (more than
10 dB at 5000Hz).

The variance of the energy in each subsystem is given by Eq. (3). The appropriate values of the a
parameters are: ak ¼ K (point load, Eq. (A.2)), and aks ¼ 2K (single-point junction, Eq. (A.4)),
where K was taken to be 2.7. The modal overlap factors at 1000Hz (based on the identified
damping loss factors and theoretical modal densities) are 0.95 for the plates and 1.2 for the
cylinder. These values increase respectively to 4.7 and 22.4 at 5000Hz.

The experimental and predicted mean energies for loading on the cylinder are shown in
Fig. 15(a). The SEA prediction can be seen to be satisfactory. The inflexion point in the curves at
5000Hz corresponds to the ring frequency of the cylinder, below which the input power increases
with frequency, and beyond which the input power is approximately constant with frequency.
Since the configuration is symmetrical for the three plates, all three should have the same mean
energy, and this is found both theoretically and experimentally. The relative variances of the
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Fig. 15. Ensemble mean and variance of the energy frequency response of the cylinder and plates, when the cylinder is

driven by a point force. (a) Mean; (b) relative variance. All three plates have similar responses. The predictions are the
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energy are shown in Fig. 15(b). For clarity of presentation, the experimental relative variance
curves have been smoothed by averaging over moving frequency bands of 200Hz widths. Again,
due to symmetry, the results are the same for each of the three plates. The prediction is far from
exact, but captures the main trend. The relative variance of the cylinder is noticeably
overpredicted at low frequencies. This is thought to be due, in part, to a lack of statistical
overlap, i.e. the added masses are insufficient to completely randomize the cylinder at low
frequencies, and thus the system is more deterministic than predicted by the theory.

The results obtained with forcing on plate 1 are shown in Fig. 16. The mean energies are
reasonably well predicted by SEA, although the energies of plates 2 and 3 are underestimated.
Due to symmetry, plates 2 and 3 should have the same mean response, and this is found to be the
case in both the experimental and theoretical results. The relative variance predictions shown in
Fig. 16(b) are a good approximation for all subsystems above 2000Hz. Again, the relative
variance is overpredicted at low frequencies, possibly due to insufficient randomization in the
experimental arrangement.

As an example of the complete set of experimental data, the energy of each subsystem for each
sample is shown in Fig. 17 for the case of a point load applied to plate 1. The gray curves are the
responses for each sample; the fluctuating black curves are the means over all 30 samples. The
same vertical scale is used for all diagrams, and it can be seen that the mean energy decreases from
the driven plate 1, to the cylinder (which is the first connected subsystem), and to plates 2 and 3
(which are more ‘‘remote’’ from the driven subsystem). It can also be seen that the variance of the
energy follows the opposite trend, with more scatter of the gray curves about the mean for plates 2
and 3 than for the cylinder and plate 1. The mean energies predicted by SEA are the smooth solid
lines, and the 99% confidence bounds based on the predicted relative variance are plotted with
dashed lines. These bounds were computed by assuming that the energy has a lognormal
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Fig. 17. Energy frequency response of the cylinder (a) and plates (b–d), when the plate 1 is driven by a point force.

Gray: all 30 samples; fluctuating black: mean over the samples; smooth solid line: SEA prediction of the mean; dashed

lines: bounds of the 99% confidence interval.
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distribution, as suggested in the literature [2,19,20]. The details of this computation are given in
Appendix C. The bounds define a fairly robust interval for the driven plate and cylinder, whose
mean energy was shown to be well predicted by SEA. For the two remote plates, the experimental
mean energy is not so well predicted by SEA, and this partly explains the poorer performance of
the confidence bounds. As discussed in Ref. [3], the variance theory is based on the assumption
that SEA yields a good estimate of the mean energy, and the theory is not designed to correct any
bias in the predicted mean. In principle, the SEA model could have been updated to predict a
closer approximation to the experimental mean prior to applying the variance theory, but this has
not been performed as part of the present work.
6. Conclusions

The present paper has extended the analysis of Ref. [3] to the prediction of the variance of the
energy density at a point within a built-up system. Numerical and experimental benchmark
studies have been performed, with the aim of validating both the original theory and the new
developments. In all cases the theory has been found to capture the qualitative trends of the
benchmark results, with very good quantitative agreement in many cases. For the experimental
data, it was found that the deviation from the predicted results is due in part to the limited number
of samples in the experimental Monte Carlo ensemble.

The range of problems addressed in this paper covers the variance prediction of both total
energy and energy density responses, either at a pure tone or averaged over frequency bands, for
built-up systems subjected to deterministic point or spatially random rain-on-the-roof forcing. It
should be emphasized that the present theory is based on SEA, and the only additional
parameters required are the terms ak and aks that are described in Section 2.2 and Appendix A.
The method therefore shares the advantages and disadvantages of SEA: the main advantage is
that the method is computationally efficient and easy to apply; the main disadvantage is that the
conditions required for the successful application of SEA must be met.
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Appendix A. The parameters ak and aks

In this section, the values of the parameter a are given for a line coupling, a point coupling, and
a point load. According to Eq. [13], the parameter a is defined as

a ¼
E½a2

n�

E½an�
2
, (A.1)
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where an is related to the modal force fn applied by the loading or coupling on the nth mode shape
of the subsystem. If one realization of force distribution is considered for each member of the
ensemble of random systems, then an is given by Eq. (14). Alternatively, if an averaged is
performed over several realizations of the force for each member of the ensemble, then an is given
by Eq. (15).
A.1. ak for a point load

For a deterministic point force of complex amplitude F acting at a location x, Eq. (14) reduces
to an ¼ jF j2f2

nðxÞ. Substituting this result into Eq. (A.1) yields

ak ¼
E½f2

nðxÞ�

E½fnðxÞ�
2
¼ K . (A.2)

It is assumed that K is independent of the location x, and the appropriate value would be 3 for
Gaussian mode shapes, and (3/2)d for sinusoidal mode shapes in system of dimension d [2,4]. It is
suggested in the literature that the actual value for two-dimensional systems is around 2.7 [9,15].

Now, if a pre-average is performed over N random locations of the point force, then Eq. (15)
becomes an ¼ jF j2ð1=NÞ

P
kfnðxkÞ

2. This yields E½an� ¼ jF j2E½f2
n�, and E½a2

n� ¼ jF j4 ðE½f4
n�=Nþ

E½f2
n�

2ðN � 1Þ=NÞ, with the consequence that

ak ¼ 1 þ
ðK � 1Þ

N
. (A.3)

For large N this type of load is equivalent to spatially random rain-on-the-roof, as often
encountered in SEA, in which case ak ¼ 1.
A.2. aks for a point coupling

Consider two subsystems s and k connected at N points. The N coupling forces are
expected to have a random complex amplitude. As discussed in Ref. [3], if the forces
are assumed to be uncorrelated and complex Gaussian, on the basis of Ref. [14],
then for all forces Fi and Fj, one has E½jFij

2� ¼ E½jFjj
2�, E½jFij

4�=E½jFij
2�2 ¼ 2, E½FiF



jai� ¼ 0,

and E½FiF j� ¼ 0.
For the case with one force configuration per member of the ensemble, Eq. (14) yields

an ¼ j
P

iF ifnðxiÞj
2. Assuming that the mode shapes and coupling forces are uncorrelated [3], it is

found that E½an� ¼
P

iE½jFij
2�E½f2

n�, and E½a2
n� ¼

P
iE½jFij

4�E½f4
n� þ 2

P
jaiE½jFij

2�E½jFjj
2�E½f2

n�
2,

which leads to

aks ¼ 2þ
ð2K � 2Þ

N
. (A.4)

Now, if an average is performed over the coupling forces, Eq. (15) can be written
as an ¼

P
i

P
jhFiF



j ifnðxiÞfnðxjÞ, which according to the force cross-correlation properties

can be rewritten as an ¼
P

i jFij
2

� �
f2

nðxiÞ. This in turn yields E½an� ¼ N jFij
2

� �
E½f2

n�
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and E½a2
n� ¼ N jFij

2
� �2

E½f4
n� þ ðN � 1ÞN jFij

2
� �2

E½f2
n�

2, with the consequence that

aks ¼ 1 þ
ðK � 1Þ

N
. (A.5)

A.3. aks for a line coupling

For a subsystem k with a connection to a subsystem s along a line L, the generalized modal
force arising from the junction can be written as f n ¼

R
L

f ðxÞfnðxÞ dx, where f is the coupling
force distribution along the line. If the correlation length of the integrand is short, then the
generalized modal force is analogous to a summation of independent random variables, and from
the central limit theorem it can be expected to approach a complex Gaussian random process. In
the case of one force configuration per member of the ensemble, an is given by |fn|

2 (Eq. (14)), and
Eq. (A.1) then yields

aks ¼ 2. (A.6)

This result is consistent with Eq. (A.4) when the number of coupling points N tends to infinity
(continuous distribution of coupling forces).

Now, if a pre-average is performed over the coupling force distribution, then Eq. (15) becomes
an ¼

RR
L;L0 f ðxÞf 


ðx0Þ
� �

fnðxÞfnðx
0Þ dx dx0, where the function f ðxÞf 


ðx0Þ
� �

is a deterministic
quantity. If the correlation length of the mode shapes is short compared to the size of the junction,
then the law of large numbers suggests that an will approach a deterministic value. In this case

aks ¼ 1, (A.7)

which is consistent with Eq. (A.5) when the number of coupling points N tends to infinity.
Appendix B. A comparison between two variance theories

The major differences between the variance formulation proposed by Lyon and DeJong [2], and
the one presented in this paper (with more details in Ref. [3]) are listed below in the current
notation.

The variance of the input power to a subsystem is given by Eq. (12.3.5) of [2] versus Eqs. (4) and
(9). Eq. (9) can actually be simplified [17] to better compare the two formulations:

Var½Pran;k� ¼ P2
in;k

ak

pm0
k

1

ð1þ B0
k=pÞ

� �

versus

Var½Pran;k��P2
in;k

ak � 1

pm0
k

1

ð1 þ B0
k=pÞ

þ
lnð1þ B0

k
2
Þ

ðpm0
kB0

kÞ
2

 !
. (B.1a,b)

The difference is due to adopting either a Poisson or a GOE description of the natural frequency
statistics of an isolated subsystem. As detailed in Ref. [9], Eq. (B.1a) is expected to apply to
systems with symmetry such as a bare rectangular simply supported plate, while Eq. (B.1b) would
rather be valid for more random systems with no symmetry.
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The variance of an off-diagonal term in the energy-power matrix is given by Eq. (12.3.7) of [2],
where the energy-power matrix is assumed to be symmetric, versus Eqs. (5) and (9) where the
energy-power matrix is not assumed to be symmetric:

Var½Cran;ks� ¼ C2
ks

ak

pm0
k

1

ð1 þ B0
k=pÞ

� �
as

pm0
s

1

ð1 þ B0
s=pÞ

� �

versus

Var½Cran;ks��C2
ks

aks � 1

pm0
k

1

ð1þ B0
k=pÞ

þ
lnð1 þ B0

k
2
Þ

ðpm0
kB0

kÞ
2

 !
. (B.2a,b)

The contribution to the energy variance from the coupling terms is given by the second term of
Eq. (12.3.3) of [2] versus the second term of Eq. (3):

X
k

X
s

C�1
jk Ês

� �2

Var½Cran;ks� versus
X

k

X
sak

ðC�1
jk � C�1

js ÞÊs

� �2

Var Cran;ks

� �
. (B.3a,b)

The difference arises from a power conservation constraint on the entries of the energy-power
matrix, imposed by Eq. (30) of Ref. [3]. The variance of the diagonal terms of the energy-power
matrix given by [2] is Var½Cran;kk� ¼

P
jakVar½Cran;jk�, and this term does not appear in the present

formulation.
Appendix C. Confidence interval for the energy response

With the assumption that the statistical distribution of the subsystem energy is lognormal, the
bounds of the confidence interval for a given confidence level CL (0oCLo1) may be computed.
The lognormal cumulative distribution function is given by

DðxÞ ¼
1

2
1 þ erf

lnðxÞ � M

S
ffiffiffi
2

p

� 	� �
, (C.1)

where erf is the error function, and M and S are expressed in terms of the mean and variance of
the energy as E½E� ¼ exp½M þ S2=2� and Var½E� ¼ E½E�2ðexp½S2� � 1Þ. It follows that
S2 ¼ lnð1 þ Var½E�=E½E�2Þ.

Let E� and E+ denote the lower and upper bounds of the interval. Following Lyon’s
formulation [2,4], these bounds can be written as E� ¼ E½E�=expfX g and Eþ ¼ E½E� expfX g,
where X can be obtained by solving CL ¼ DðEþÞ � DðE�Þ. This can be re-written as

CL ¼
1

2
erf

S2=2þ X

S
ffiffiffi
2

p

� 	
� erf

S2=2 � X

S
ffiffiffi
2

p

� 	� �
. (C.2)

CL is a monotonically increasing function of X, from 0 to 1, with an asymptote of 1.
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